论文标题

在表面的固定部分

On the fixed part of pluricanonical systems for surfaces

论文作者

Liu, Jihao, Xie, Lingyao

论文摘要

我们表明$ | mk_x | $定义了一张男性地图,并且对于任何$ \ frac {1} {2} {2} $ -lc-lc surface $ x $,对于某些有限的正整数$ m $没有固定零件。对于每个正整数$ n \ geq 3 $,我们构造一系列投影表面$ x_ {n,i} $,使得$ k_ {x_ {x_ {n,i}} $很丰富,$ {\ rm {\ rm {mld}}} $ \ lim_ {i \ rightarrow+\ infty} {\ rm {mld}}(x__ {n,i})= \ frac {1} {n} $,对于任何积极的整数$ m $,都存在$ i $ i $ i $ y $ y $ y $ | | mk_ {x_ {x__ {x _ {n,i}}} nonne} nonnem} nonne}}}}}}}}}。这些结果回答了XU问题的表面情况。

We show that $|mK_X|$ defines a birational map and has no fixed part for some bounded positive integer $m$ for any $\frac{1}{2}$-lc surface $X$ such that $K_X$ is big and nef. For every positive integer $n\geq 3$, we construct a sequence of projective surfaces $X_{n,i}$, such that $K_{X_{n,i}}$ is ample, ${\rm{mld}}(X_{n,i})>\frac{1}{n}$ for every $i$, $\lim_{i\rightarrow+\infty}{\rm{mld}}(X_{n,i})=\frac{1}{n}$, and for any positive integer $m$, there exists $i$ such that $|mK_{X_{n,i}}|$ has non-zero fixed part. These results answer the surface case of a question of Xu.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源