论文标题
在周期性的环境中分支布朗运动和脉动流动波的独特性
Branching Brownian motion in a periodic environment and uniqueness of pulsating travelling waves
论文作者
论文摘要
在周期性的环境中,使用一维的布朗尼运动,我们给出了概率的证据,证明了在周期性环境中F-KPP方程的脉动流动波的脉动行驶波的唯一性。本文是[Ren等人的续集。在周期性的环境中分支布朗运动和脉动流动波的存在],在这种环境中,我们证明了在超临界和关键案例中使用添加剂和衍生性的布朗尼运动在周期环境中分支布朗尼运动的限制的脉动行进波的存在。
Using one-dimensional branching Brownian motion in a periodic environment, we give probabilistic proofs of the asymptotics and uniqueness of pulsating travelling waves of the F-KPP equation in a periodic environment. This paper is a sequel to [Ren et al. Branching Brownian motion in a periodic environment and existence of pulsating travelling waves], in which we proved the existence of the pulsating travelling waves in the supercritical and critical cases using the limits of the additive and derivative martingales of branching Brownian motion in a periodic environment.