论文标题

原始版:聋哑用户的个性化且可扩展的声音识别系统

ProtoSound: A Personalized and Scalable Sound Recognition System for Deaf and Hard-of-Hearing Users

论文作者

Jain, Dhruv, Nguyen, Khoa Huynh Anh, Goodman, Steven, Grossman-Kahn, Rachel, Ngo, Hung, Kusupati, Aditya, Du, Ruofei, Olwal, Alex, Findlater, Leah, Froehlich, Jon E.

论文摘要

最近的进步使移动设备上的聋哑和听力难(DHH)用户实现了自动声音识别系统。但是,这些工具使用预先训练的通用声音识别模型,这些模型无法满足DHH用户的不同需求。我们介绍了ProtoSound,这是一种通过录制一些示例来定制声音识别模型的交互式系统,从而实现了个性化和细粒度的类别。原始功能是由先前的工作来探讨DHH人的声音意识需求,以及我们与472 DHH参与者进行的调查。为了评估原始功能,我们表征了两个现实世界声音数据集上的性能,显示出比最先进的(例如,第一个数据集中的 +9.7%精度)的显着改善。然后,我们通过移动应用程序部署了ProtoSound的最终用户培训和实时识别,并招募了19名听力参与者,他们听取了现实世界的声音,并评估了56个地点(例如房屋,餐馆,公园)的准确性。结果表明,原创性凭借实时的模型在设备上个性化,并且在各种声学环境中精确学习的声音。我们通过讨论具有个性化的声音识别的公开挑战来结束,包括需要更好地录制接口和算法改进。

Recent advances have enabled automatic sound recognition systems for deaf and hard of hearing (DHH) users on mobile devices. However, these tools use pre-trained, generic sound recognition models, which do not meet the diverse needs of DHH users. We introduce ProtoSound, an interactive system for customizing sound recognition models by recording a few examples, thereby enabling personalized and fine-grained categories. ProtoSound is motivated by prior work examining sound awareness needs of DHH people and by a survey we conducted with 472 DHH participants. To evaluate ProtoSound, we characterized performance on two real-world sound datasets, showing significant improvement over state-of-the-art (e.g., +9.7% accuracy on the first dataset). We then deployed ProtoSound's end-user training and real-time recognition through a mobile application and recruited 19 hearing participants who listened to the real-world sounds and rated the accuracy across 56 locations (e.g., homes, restaurants, parks). Results show that ProtoSound personalized the model on-device in real-time and accurately learned sounds across diverse acoustic contexts. We close by discussing open challenges in personalizable sound recognition, including the need for better recording interfaces and algorithmic improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源