论文标题

拆卸超分辨率和差异估计的光场

Disentangling Light Fields for Super-Resolution and Disparity Estimation

论文作者

Wang, Yingqian, Wang, Longguang, Wu, Gaochang, Yang, Jungang, An, Wei, Yu, Jingyi, Guo, Yulan

论文摘要

光场(LF)摄像机记录了光线的强度和方向,并将3D场景编码为4D LF图像。最近,为各种LF图像处理任务提出了许多卷积神经网络(CNN)。但是,CNN有效地处理LF图像是一项挑战,因为空间和角度信息与不同的差异高度缠绕。在本文中,我们提出了一种通用机制,以将这些耦合信息解开以进行LF图像处理。具体而言,我们首先设计了一类特定领域的卷积,以将LFS与不同的维度解开,然后通过设计特定于任务的模块来利用这些分离的功能。我们的解开机制可以在事先之前很好地纳入LF结构,并有效地处理4D LF数据。基于提出的机制,我们开发了三个网络(即distgssr,distgasr和Distgdisp),用于空间超分辨率,角度超分辨率和差异估计。实验结果表明,我们的网络在所有这三个任务上都实现了最先进的绩效,这表明了我们解开机制的有效性,效率和一般性。项目页面:https://yingqianwang.github.io/distglf/。

Light field (LF) cameras record both intensity and directions of light rays, and encode 3D scenes into 4D LF images. Recently, many convolutional neural networks (CNNs) have been proposed for various LF image processing tasks. However, it is challenging for CNNs to effectively process LF images since the spatial and angular information are highly inter-twined with varying disparities. In this paper, we propose a generic mechanism to disentangle these coupled information for LF image processing. Specifically, we first design a class of domain-specific convolutions to disentangle LFs from different dimensions, and then leverage these disentangled features by designing task-specific modules. Our disentangling mechanism can well incorporate the LF structure prior and effectively handle 4D LF data. Based on the proposed mechanism, we develop three networks (i.e., DistgSSR, DistgASR and DistgDisp) for spatial super-resolution, angular super-resolution and disparity estimation. Experimental results show that our networks achieve state-of-the-art performance on all these three tasks, which demonstrates the effectiveness, efficiency, and generality of our disentangling mechanism. Project page: https://yingqianwang.github.io/DistgLF/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源