论文标题
强大的最低原理和大型时间渐近液,用于粘度解决方案,以达到一类非线性可能是退化的抛物线方程
A Strong Minimum principle and Large Time Asymptotics for viscosity solutions to a class of doubly nonlinear possibly degenerate parabolic equations
论文作者
论文摘要
我们研究了强大原理的一个版本,以及对形式$ h(du,d^2u)-u^{k-1} u_t = 0,\; \; \; k \ geq 1,\ quad \ quad \ quad \ quad \ mbox {0,$ s $ s $ s $ s $ s $ s $ h(du,d^2u)的双线性抛物线方程的积极粘度解决方案的大量渐近。 $ω\ subset \ mathbb {r}^n $是一个有界域,$ 0 <t \ leq \ infty $。空间操作员$ h $与Power $ k $均匀。
We study a version of the strong minimum principle, and large time asymptotics of positive viscosity solutions to classes of doubly nonlinear parabolic equations of the form $$ H(Du,D^2u)-u^{k-1}u_t=0,\;\;k\geq 1,\quad\mbox{in $Ω\times [0,T)$},$$ where $Ω\subset \mathbb{R}^n$ is a bounded domain and $0<T\leq \infty$. The spatial operator $H$ is homogeneous with power $k$.