论文标题

色数VI的多项式边界。添加四个vertex路径

Polynomial bounds for chromatic number VI. Adding a four-vertex path

论文作者

Chudnovsky, Maria, Scott, Alex, Seymour, Paul, Spirkl, Sophie

论文摘要

如果有一个函数$ f $,则一类图形为$χ$ cound,使得同类中的每个图$ g $最多都有$ f(ω(g))$,其中$ω(g)$是$ g $的集团;如果可以将$ f $视为多项式,则该类是多项式$χ$结合的。 Gyárfás-Sumner的猜想断言,对于每个森林$ h $,$ h $ free Graphs(无诱导副本为$ h $)的类别为$χ$ bounded。让我们说,如果满足$ h $ free图的类别是多项式$χ$结合的较强的财产,那么它是一个很好的森林$ H $。 众所周知,很少有森林是很好的:例如,它是针对五个vertex路径开放的。确实,甚至还不知道,如果$ h $的每个组成部分都不错,那么$ h $是好的,尤其是,众所周知,两种四个vertex路径的脱节结合是好的。在这里,我们表明后者,更普遍地表明,如果$ h $很好,那么$ h $和四个vertex路径的脱节也是如此。我们还证明了一个更普遍的结果:如果$ H_1 $的每个组件都不错,而$ H_2 $是任何路径(或扫帚),则均为$ h_1 $ - free和$ h_2 $的图形类别是多样地$χ$ b的。

A class of graphs is $χ$-bounded if there is a function $f$ such that every graph $G$ in the class has chromatic number at most $f(ω(G))$, where $ω(G)$ is the clique number of $G$; the class is polynomially $χ$-bounded if $f$ can be taken to be a polynomial. The Gyárfás-Sumner conjecture asserts that, for every forest $H$, the class of $H$-free graphs (graphs with no induced copy of $H$) is $χ$-bounded. Let us say a forest $H$ is good if it satisfies the stronger property that the class of $H$-free graphs is polynomially $χ$-bounded. Very few forests are known to be good: for example, it is open for the five-vertex path. Indeed, it is not even known that if every component of a forest $H$ is good then $H$ is good, and in particular, it was not known that the disjoint union of two four-vertex paths is good. Here we show the latter, and more generally, that if $H$ is good then so is the disjoint union of $H$ and a four-vertex path. We also prove a more general result: if every component of $H_1$ is good, and $H_2$ is any path (or broom) then the class of graphs that are both $H_1$-free and $H_2$-free is polynomially $χ$-bounded.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源