论文标题

通过强化学习对知识图进行规则挖掘

Rule Mining over Knowledge Graphs via Reinforcement Learning

论文作者

Chen, Lihan, Jiang, Sihang, Liu, Jingping, Wang, Chao, Zhang, Sheng, Xie, Chenhao, Liang, Jiaqing, Xiao, Yanghua, Song, Rui

论文摘要

知识图(KGS)是针对KGS广泛应用的重要来源存储库,最近吸引了与KG相关的研究社区的广泛研究兴趣。已经提出了许多解决大规模公斤规则挖掘的解决方案,但是,规则生成的效率低下和规则评估的无效性效率低下。为了解决这些问题,在本文中,我们提出了一种以增强学习为指导的一代评估规则挖掘方法。具体而言,设计了两个基于两步的框架。第一阶段旨在培训从KGS生成规则生成的加强学习代理,其次是利用代理的价值函数来指导分步规则生成。我们在几个数据集上进行了广泛的实验,结果证明,我们的规则挖掘解决方案在效率和有效性方面实现了最先进的绩效。

Knowledge graphs (KGs) are an important source repository for a wide range of applications and rule mining from KGs recently attracts wide research interest in the KG-related research community. Many solutions have been proposed for the rule mining from large-scale KGs, which however are limited in the inefficiency of rule generation and ineffectiveness of rule evaluation. To solve these problems, in this paper we propose a generation-then-evaluation rule mining approach guided by reinforcement learning. Specifically, a two-phased framework is designed. The first phase aims to train a reinforcement learning agent for rule generation from KGs, and the second is to utilize the value function of the agent to guide the step-by-step rule generation. We conduct extensive experiments on several datasets and the results prove that our rule mining solution achieves state-of-the-art performance in terms of efficiency and effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源