论文标题

探索人类的流动性多模式乘客预测:图形学习框架

Exploring Human Mobility for Multi-Pattern Passenger Prediction: A Graph Learning Framework

论文作者

Kong, Xiangjie, Wang, Kailai, Hou, Mingliang, Xia, Feng, Karmakar, Gour, Li, Jianxin

论文摘要

交通流量预测是智能运输系统不可或缺的一部分,因此对于各种与交通相关的应用程序的基础。公共汽车是具有固定路线和时间表的城市居民搬迁的必不可少的方式,这导致了潜在的旅行规律性。但是,在这种固定的移动性模式下,人类的移动性模式,特别是公交乘客之间的复杂关系。尽管存在许多模型来预测交通流量,但在这方面尚未探索人类流动模式。为了减少这一研究差距并从这种固定的旅行行为中学习人类流动性知识,我们提出了一个基于图形卷积网络(GCN)的多型乘客流量预测框架MPGCN。首先,我们构建了一个新颖的共享网络,以基于总线记录数据对乘客之间的关系进行建模。然后,我们采用GCN通过学习有用的拓扑信息来从图中提取功能,并引入一种深层聚类方法来识别隐藏在公交乘客中的移动性模式。此外,为了充分利用时空信息,我们建议GCN2Flow根据各种迁移率模式来预测乘客流量。据我们所知,本文是第一项采用多种方法来预测图形学习的总线乘客流量的工作。我们设计了用于优化路线的案例研究。对现实世界总线数据集的广泛实验表明,MPGCN在乘客流量预测和路线优化中具有潜在的功效。

Traffic flow prediction is an integral part of an intelligent transportation system and thus fundamental for various traffic-related applications. Buses are an indispensable way of moving for urban residents with fixed routes and schedules, which leads to latent travel regularity. However, human mobility patterns, specifically the complex relationships between bus passengers, are deeply hidden in this fixed mobility mode. Although many models exist to predict traffic flow, human mobility patterns have not been well explored in this regard. To reduce this research gap and learn human mobility knowledge from this fixed travel behaviors, we propose a multi-pattern passenger flow prediction framework, MPGCN, based on Graph Convolutional Network (GCN). Firstly, we construct a novel sharing-stop network to model relationships between passengers based on bus record data. Then, we employ GCN to extract features from the graph by learning useful topology information and introduce a deep clustering method to recognize mobility patterns hidden in bus passengers. Furthermore, to fully utilize Spatio-temporal information, we propose GCN2Flow to predict passenger flow based on various mobility patterns. To the best of our knowledge, this paper is the first work to adopt a multipattern approach to predict the bus passenger flow from graph learning. We design a case study for optimizing routes. Extensive experiments upon a real-world bus dataset demonstrate that MPGCN has potential efficacy in passenger flow prediction and route optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源