论文标题

学习具有充分经验的贝叶斯稀疏网络,以持续学习

Learning Bayesian Sparse Networks with Full Experience Replay for Continual Learning

论文作者

Gong, Dong, Yan, Qingsen, Liu, Yuhang, Hengel, Anton van den, Shi, Javen Qinfeng

论文摘要

持续学习(CL)方法旨在使机器学习模型能够学习新任务,而不会忘记以前掌握的任务。现有的CL方法通常会保留以前看到的样本的缓冲,进行知识蒸馏或对此目标使用正则化技术。尽管表现出色,但他们仍然受到跨任务的干扰,导致灾难性遗忘。为了改善此问题,我们建议仅激活并选择在任何阶段学习当前和过去任务的稀疏神经元。因此,可以为将来的任务保留更多参数空间和模型容量。这最小化了不同任务的参数之间的干扰。为此,我们提出了一个稀疏的神经网络(SNCL),该网络在所有层中神经元的激活上采用变异的贝叶斯稀疏阶段。充分的经验重播(FER)为学习不同层中神经元的稀疏激活提供了有效的监督。开发了一种损失的储层采样策略来维持记忆缓冲区。关于网络结构和任务边界,所提出的方法不可知。不同数据集的实验表明,我们的方法实现了缓解遗忘的最新性能。

Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered. Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal. Despite their performance, they still suffer from interference across tasks which leads to catastrophic forgetting. To ameliorate this problem, we propose to only activate and select sparse neurons for learning current and past tasks at any stage. More parameters space and model capacity can thus be reserved for the future tasks. This minimizes the interference between parameters for different tasks. To do so, we propose a Sparse neural Network for Continual Learning (SNCL), which employs variational Bayesian sparsity priors on the activations of the neurons in all layers. Full Experience Replay (FER) provides effective supervision in learning the sparse activations of the neurons in different layers. A loss-aware reservoir-sampling strategy is developed to maintain the memory buffer. The proposed method is agnostic as to the network structures and the task boundaries. Experiments on different datasets show that our approach achieves state-of-the-art performance for mitigating forgetting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源