论文标题
ICSML:工业控制系统ML使用IEC 61131-3代码的本机推理框架
ICSML: Industrial Control Systems ML Framework for native inference using IEC 61131-3 code
论文作者
论文摘要
工业控制系统(ICS)在实现第四次工业革命方面发挥了催化作用。 ICS设备(例如可编程逻辑控制器(PLC),自动化,监视和控制工业,能源和商业环境中的关键过程。传统运营技术(OT)与信息技术(IT)的融合开设了一种新的且独特的威胁格局。这激发了防御研究,该研究重点关注基于机器学习(ML)的异常检测方法,该方法在外部IT硬件上运行,这意味着成本的增加和威胁景观的进一步扩展。为了删除此要求,我们介绍了ICS机器学习推理框架(ICSML),该框架能够在PLC上定期执行ML模型推断。 ICSML在IEC 61131-3代码中实现,并提供了几种优化,以绕过特定于域的语言所施加的限制。因此,它在每个PLC上都可以使用,而无需供应商支持。 ICSML提供了一组完整的组件,用于创建与已建立的ML框架类似的完整ML模型。我们运行一系列研究记忆和性能的基准测试,并将我们的解决方案与TFLITE推理框架进行比较。同时,我们开发了特定领域的模型优化,以提高ICSML的效率。为了证明ICSML的能力,我们评估了针对淡化厂的过程感知攻击的真实防御的案例研究。
Industrial Control Systems (ICS) have played a catalytic role in enabling the 4th Industrial Revolution. ICS devices like Programmable Logic Controllers (PLCs), automate, monitor, and control critical processes in industrial, energy, and commercial environments. The convergence of traditional Operational Technology (OT) with Information Technology (IT) has opened a new and unique threat landscape. This has inspired defense research that focuses heavily on Machine Learning (ML) based anomaly detection methods that run on external IT hardware, which means an increase in costs and the further expansion of the threat landscape. To remove this requirement, we introduce the ICS machine learning inference framework (ICSML) which enables executing ML model inference natively on the PLC. ICSML is implemented in IEC 61131-3 code and provides several optimizations to bypass the limitations imposed by the domain-specific languages. Therefore, it works on every PLC without the need for vendor support. ICSML provides a complete set of components for creating full ML models similarly to established ML frameworks. We run a series of benchmarks studying memory and performance, and compare our solution to the TFLite inference framework. At the same time, we develop domain-specific model optimizations to improve the efficiency of ICSML. To demonstrate the abilities of ICSML, we evaluate a case study of a real defense for process-aware attacks targeting a desalination plant.