论文标题

反事实的遗憾最小化的抗僵局敏捷雷达游戏

Counterfactual Regret Minimization for Anti-jamming Game of Frequency Agile Radar

论文作者

Li, Huayue, Han, Zhaowei, Pu, Wenqiang, Liu, Liangqi, Li, Kang, Jiu, Bo

论文摘要

Radar和Jammer之间的竞争是现代电子战中的一个新兴问题,原则上可以将其视为与两名玩家的不合作游戏。在这项工作中,考虑了频率敏捷(FA)雷达与噪声调节干扰器之间的竞争。由于现代的FA雷达与多个脉冲采用连贯的处理,因此,竞争是在多发的方式中,可以将每个脉冲建模为雷达和干扰器之间的一轮相互作用。为了捕获游戏内部的多轮属性以及游戏中不完美的信息,即雷达和干扰器无法知道即将到来的信号,我们为这种竞争提出了广泛的形式游戏公式。由于游戏信息的数量在脉冲数方面呈指数增长,因此找到NASH平衡(NE)策略可能是一项计算上棘手的任务。为了有效解决游戏,利用了一种基于学习的算法,称为“深层遗憾最小化”(CFR)。数值模拟证明了深CFR算法在大致找到NE并获得最佳响应策略的有效性。

The competition between radar and jammer is one emerging issue in modern electronic warfare, which in principle can be viewed as a non-cooperative game with two players. In this work, the competition between a frequency agile (FA) radar and a noise-modulated jammer is considered. As modern FA radar adopts coherent processing with several pulses, the competition is hence in a multiple-round way where each pulse can be modeled as one round interaction between the radar and jammer. To capture such multiple-round property as well as imperfect information inside the game, i.e., radar and jammer are unable to know the upcoming signal, we propose an extensive-form game formulation for such competition. Since the number of game information states grows exponentially with respect to number of pulses, finding Nash Equilibrium (NE) strategies may be a computationally intractable task. To effectively solve the game, a learning-based algorithm called deep Counterfactual Regret Minimization (CFR) is utilized. Numerical simulations demonstrates the effectiveness of deep CFR algorithm for approximately finding NE and obtaining the best response strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源