论文标题
带纳秒旋转依赖性踢的旋转器Matterwave控制
Spinor matterwave control with nanosecond spin-dependent kicks
论文作者
论文摘要
当今,先进量子技术的重要方面依赖于对超精细拉曼过渡的原子质波动的快速控制。不幸的是,有效的拉曼激发通常伴随着无偿的动态相和连贯的旋转裂缝,从而防止了后坐力动量到大样本的准确和重复转移。我们提供系统的研究,以证明通过动态编程绝热脉冲序列可以实质性地克服局限性。在实验上,反向传播的频率割断的脉冲在光学延迟线上进行了编程,以与五$Δm= 0 $Δm= 0 $ theperfine拉曼拉曼过渡为$^{85} $ rb原子,用于自旋依赖的踢球(sdk)$τ= 40 $ 〜nanoseconds,并带有$ 〜nanoseconds,$ f nanoseconds,$ f nanoseconds,$ f nanoseconds,$ f nanoseconds,$ f nanoseconds,$ f in $ f phys $ f phyn $ f i;忠诚。在数值建模的帮助下,我们证明,通过平衡的方式交替交替进行连续的脉冲鸣叫,可以管理(包括旋转螺旋)的非绝热误差的积累,而动态阶段可以强烈取消。该方法在相稳定的延迟线上进行操作,以有效的拉曼激发对纺纱材料波的精确,快速和灵活的控制。
Significant aspects of advanced quantum technology today rely on rapid control of atomic matterwaves with hyperfine Raman transitions. Unfortunately, efficient Raman excitations are usually accompanied by uncompensated dynamic phases and coherent spin-leakages, preventing accurate and repetitive transfer of recoil momentum to large samples. We provide systematic study to demonstrate that the limitations can be substantially overcame by dynamically programming an adiabatic pulse sequence. Experimentally, counter-propagating frequency-chirped pulses are programmed on an optical delay line to parallelly drive five $Δm=0$ hyperfine Raman transitions of $^{85}$Rb atoms for spin-dependent kick (SDK) within $τ=40$~nanoseconds, with an $f_{\rm SDK}\approx 97.6\%$ inferred fidelity. Aided by numerical modeling, we demonstrate that by alternating the chirps of successive pulses in a balanced fashion, accumulation of non-adiabatic errors including the spin-leakages can be managed, while the dynamic phases can be robustly cancelled. Operating on a phase-stable delay line, the method supports precise, fast, and flexible control of spinor matterwave with efficient Raman excitations.