论文标题

Annuli共享有限套装的Meromorormormorphic函数与截短的多重性

Meromorphic functions on annuli sharing finite sets with truncated multiplicity

论文作者

Quang, Si Duc

论文摘要

本文的目的是双重的。第一个是在Annuli和Meromorormormormormormormormorormormormorormormorormorphic函数目标(可能不是小功能)上建立第二个主要定理,具有截断的计数函数(截断级别1),并且对误差项进行了详细的估计。第二个是表明,如果多项式$$ p_s(w)=(w-a_1)\ cdots(w-a_q)$$是一种独特的多项式,用于在annulus $ \ mathbb a(r_0)上的可允许的meromormorphic函数(r_0)$,以至于$ p'__s(w)$ j $ k $ k $ k $ k $ k zeros and $ k zeros and&k seros and&k seros and&k seros和$ q> \ frac {(5k+7)\ ell} {2 \ ell-175} $,然后套装$ s = \ {a_1,\ ldots,a_q \} $是一个有限范围集合,带有truncation $ \ ell $,带有$ \ ell $ for Acciss-affissible for Acciss-affissible Meromorphic函数,可在$ \ nathbb a(r_0)上$ \ nationa(r_0)。该结果将h. fujimoto的$ \ m rathbb c $上的holomorphic函数的有限范围集(具有截断级别$ \ ell = \ infty $)扩展到了先前的结果。

The purpose of this paper has twofold. The first is to establish a second main theorem for meromorphic functions on annuli and meromorphic function targets (may not be small functions) with truncated counting functions (truncation level 1) and with a detailed estimate for the error term. The second is to show that if the polynomial $$P_S(w)=(w-a_1)\cdots (w-a_q)$$ is a uniqueness polynomial for admissible meromorphic functions on an annulus $\mathbb A(R_0)$ such that $P'_S(w)$ has exactly $k$ distinct zeros and $q>\frac{(5k+7)\ell}{2\ell-175}$, then the set $S=\{a_1,\ldots,a_q\}$ is a finite range set with truncation level $\ell$ for admissible meromorphic functions on $\mathbb A(R_0)$. This result extends the previous result on the finite range set (with truncation level $\ell=\infty$) for holomorphic functions on $\mathbb C$ of H. Fujimoto.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源