论文标题
具有双重润湿性的混合纳米线上的深视力启发的气泡动力学
Deep Vision-Inspired Bubble Dynamics on Hybrid Nanowires with Dual Wettability
论文作者
论文摘要
沸腾的功效本质上是束缚的,以在气泡成核的渴望和蒸气去除的必要性之间进行权衡。解决这些竞争需求的解决方案需要将气泡活动和液体输送分开,通常是通过表面工程实现的。在这项研究中,我们通过设计具有双重润湿性的异质和分割的纳米线的设计独立设计气泡成核和出发机制,目的是推动结构增强的沸腾热传递性能的极限。分离液体和蒸气途径的演示优于最先进的等级纳米线,尤其是在低热通量状态下,同时在高热通量处保持相等的性能。一个基于机器视觉的框架实现了隐藏大数据的自主策划和提取和气泡动力学。材料设计,深度学习技术和数据驱动方法的综合努力阐明了蒸气/液体途径,气泡统计和相变性能之间的机械关系。
The boiling efficacy is intrinsically tethered to trade-offs between the desire for bubble nucleation and necessity of vapor removal. The solution to these competing demands requires the separation of bubble activity and liquid delivery, often achieved through surface engineering. In this study, we independently engineer bubble nucleation and departure mechanisms through the design of heterogeneous and segmented nanowires with dual wettability with the aim of pushing the limit of structure-enhanced boiling heat transfer performances. The demonstration of separating liquid and vapor pathways outperforms state-of-the-art hierarchical nanowires, in particular, at low heat flux regimes while maintaining equal performances at high heat fluxes. A machine vision-based framework realizes the autonomous curation and extraction of hidden big data along with bubble dynamics. The combined efforts of materials design, deep learning techniques, and data-driven approach shed light on the mechanistic relationship between vapor/liquid pathways, bubble statistics, and phase change performance.