论文标题

k^{th}在polydisk上订购倾斜的汉克运算符

k^{th} order Slant Hankel Operators on the Polydisk

论文作者

Singh, M. P., Singh, Oinam Nilbir

论文摘要

在本文中,我们启动了k^{th}序列的倾斜hankel oberators在l^2(t^n)上的倾斜hankel oberator,大于或等于2和n,大于或等于1,其中t^n表示n-torus。我们给出了l^2(t^n)上有界运算符的必要条件,使其成为k^{th}秩序倾斜的汉克尔,并讨论其交换性,紧凑性,不良和等轴测特性。

In this paper, we initiate the notion of k^{th} order slant Hankel operators on L^2(T^n) for k greater than or equal to 2 and n greater than or equal to 1 where T^n denotes the n-torus. We give the necessary and sufficient condition for a bounded operator on L^2(T^n) to be a k^{th} order slant Hankel and discuss their commutative, compactness, hyponormal and isometric property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源