论文标题

过度参数化的几何正规化

Geometric Regularization from Overparameterization

论文作者

Teague, Nicholas J.

论文摘要

与损失值相关的权重集的分布的体积可能是由于合同体积的现象而导致的隐式正则化的来源,而高脑证明的几何数字的尺寸增加了。我们将几何正规化猜想和提取物介绍给对双重下降现象的解释,通过考虑因沿训练路径的潜在重量设置更新的分布的固有维度而产生的类似属性,如果该分布在跨卷中撤回的数量频率曲线在接近全球的最小值时,我们可能会在训练路径上缩回,我们可能会在接近几何学时峰值。我们说明数据保真性表示复杂性如何影响模型容量双重下降插值阈值。源自不同几何形式的时期和模型容量的双重下降曲线的存在可能意味着具有尺寸调整的N-Sphere体积对应关系的封闭的N型膜的通用性。

The volume of the distribution of weight sets associated with a loss value may be the source of implicit regularization from overparameterization due to the phenomenon of contracting volume with increasing dimensions for geometric figures demonstrated by hyperspheres. We introduce the geometric regularization conjecture and extract to an explanation for the double descent phenomenon by considering a similar property resulting from shrinking intrinsic dimensionality of the distribution of potential weight set updates available along training path, where if that distribution retracts across a volume verses dimensionality curve peak when approaching the global minima we could expect geometric regularization to re-emerge. We illustrate how data fidelity representational complexity may influence model capacity double descent interpolation thresholds. The existence of epoch and model capacity double descent curves originating from different geometric forms may imply universality of closed n-manifolds having dimensionally adjusted n-sphere volumetric correspondence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源