论文标题
分析CUTFEM的最佳预设器
Analysis of optimal preconditioners for CutFEM
论文作者
论文摘要
在本文中,我们考虑了针对标量椭圆问题的一类无限元方法。这些所谓的CutFEM方法在固定的未固定三角剖分上使用标准有限元空间,并结合了Nitsche技术和幽灵的惩罚稳定。作为模型问题,我们考虑将这种方法应用于泊松接口问题。我们介绍和分析基于子空间分解方法的新的预定器类别。未实现的有限元元素空间分为两个子空间,其中一个子空间是与背景网格相关的标准有限元空间,第二个子空间由所有剪切基函数跨越,与切割元素上的节点相对应。我们将证明这种分裂是稳定的,在离散参数和三角剖分中界面的位置均匀。基于此,我们介绍了一个有效的预处理,该预处理在光谱上等同于刚度矩阵。使用类似的分裂,可以表明,相同的预处理方法也可以应用于泊松方程的虚拟域CutFem离散化。包括数值实验的结果,以说明有关泊松界面问题和Poisson虚拟域问题的此类预处理的最佳性。
In this paper we consider a class of unfitted finite element methods for scalar elliptic problems. These so-called CutFEM methods use standard finite element spaces on a fixed unfitted triangulation combined with the Nitsche technique and a ghost penalty stabilization. As a model problem we consider the application of such a method to the Poisson interface problem. We introduce and analyze a new class of preconditioners that is based on a subspace decomposition approach. The unfitted finite element space is split into two subspaces, where one subspace is the standard finite element space associated to the background mesh and the second subspace is spanned by all cut basis functions corresponding to nodes on the cut elements. We will show that this splitting is stable, uniformly in the discretization parameter and in the location of the interface in the triangulation. Based on this we introduce an efficient preconditioner that is uniformly spectrally equivalent to the stiffness matrix. Using a similar splitting, it is shown that the same preconditioning approach can also be applied to a fictitious domain CutFEM discretization of the Poisson equation. Results of numerical experiments are included that illustrate optimality of such preconditioners for the Poisson interface problem and the Poisson fictitious domain problem.