论文标题
避难2挑战:青光眼筛查中多维分析和评估的宝库
REFUGE2 Challenge: A Treasure Trove for Multi-Dimension Analysis and Evaluation in Glaucoma Screening
论文作者
论文摘要
随着人工智能(AI)在医学图像处理中的快速发展,色彩摄影(CFP)分析中的深度学习也在不断发展。尽管眼科界有一些开源,标记为CFP的数据集,但是用于筛查的大规模数据集仅具有疾病类别的标签,并且具有底底结构注释的数据集通常很小。此外,标签标准在数据集中并不统一,也没有关于采集设备的明确信息。在这里,我们发布了针对原始挑战的青光眼分析的多功能,多质量和多设备色彩底面图像数据集 - 视网膜眼底青光眼挑战第二版(Rebuge2)。 Rebuge2数据集包含具有青光眼分类,视盘/杯子分段以及Fovea定位的2000彩色底面图像。同时,《避难2》挑战设置了三个自动青光眼诊断和眼底结构分析的子任务,并提供了在线评估框架。基于多设备和多质量数据的特征,在挑战中提供了一些具有强烈概括的方法,以使预测更加稳定。这表明Revuge2引起了人们对现实世界多域数据的特征的关注,从而弥合了科学研究和临床应用之间的差距。
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets of CFPs in the ophthalmology community, large-scale datasets for screening only have labels of disease categories, and datasets with annotations of fundus structures are usually small in size. In addition, labeling standards are not uniform across datasets, and there is no clear information on the acquisition device. Here we release a multi-annotation, multi-quality, and multi-device color fundus image dataset for glaucoma analysis on an original challenge -- Retinal Fundus Glaucoma Challenge 2nd Edition (REFUGE2). The REFUGE2 dataset contains 2000 color fundus images with annotations of glaucoma classification, optic disc/cup segmentation, as well as fovea localization. Meanwhile, the REFUGE2 challenge sets three sub-tasks of automatic glaucoma diagnosis and fundus structure analysis and provides an online evaluation framework. Based on the characteristics of multi-device and multi-quality data, some methods with strong generalizations are provided in the challenge to make the predictions more robust. This shows that REFUGE2 brings attention to the characteristics of real-world multi-domain data, bridging the gap between scientific research and clinical application.