论文标题

有限简单正交组的一些现实特性

Some Reality Properties of Finite Simple Orthogonal Groups

论文作者

Kim, Jiwon, Trefethen, Stephen, Vinroot, C. Ryan

论文摘要

我们证明了有限简单正交组的几种现实属性。对于任何主要功率$ q $和$ m \ geq 1 $,我们证明所有真正的共轭类在简单的组中都是强烈的,$ \ mathrm {p}ω^{\ pm}(\ pm}(\ pm}(4m+2,q),m \ geq 1 $,m \ geq 1 $,除了情况下3(\ mathrm {mod} \; 4)$,我们在此特殊情况下为任何$ m $构建了弱真实的类。我们还表明,没有$ \ mathrm {p}ω^{\ pm}(n,q)$具有frobenius-schur指示器$ -1 $的不可约的复杂性,除非在情况下可能是$ \ mathrm {p}Ω

We prove several reality properties for finite simple orthogonal groups. For any prime power $q$ and $m\geq 1$, we show that all real conjugacy classes are strongly real in the simple groups $\mathrm{P}Ω^{\pm}(4m+2,q), m \geq 1$, except in the case $\mathrm{P}Ω^{-}(4m+2,q)$ with $q \equiv 3(\mathrm{mod} \; 4)$, and we construct weakly real classes in this exceptional case for any $m$. We also show that no irreducible complex character of $\mathrm{P}Ω^{\pm}(n,q)$ can have Frobenius-Schur indicator $-1$, except possibly in the case $\mathrm{P}Ω^{-}(4m+2,q)$ with $q \equiv 3(\mathrm{mod} \; 4)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源