论文标题

阿尔茨海默氏病与身份潜在广告相关的语义三元的相关知识图的采矿以重新利用药物

Mining On Alzheimer's Diseases Related Knowledge Graph to Identity Potential AD-related Semantic Triples for Drug Repurposing

论文作者

Nian, Yi, Hu, Xinyue, Zhang, Rui, Feng, Jingna, Du, Jingcheng, Li, Fang, Chen, Yong, Tao, Cui

论文摘要

迄今为止,对于大多数神经退行性疾病,还没有有效的治疗方法。知识图可以为异质数据提供全面和语义的表示,并已成功地在许多生物医学应用中利用,包括药物重新利用。我们的目标是构建从文献到研究阿尔茨海默氏病(AD)与化学物质,药物和饮食补充剂之间关系的知识图,以确定预防或延迟神经退行性进展的机会。我们收集了生物医学注释,并使用SEMREP通过SEMMedDB提取了它们的关系。我们在数据预处理期间使用了基于BERT的分类器和基于规则的方法来排除噪声,同时保留了大多数与广告相关的语义三元组。 1,672,110个过滤三元组用于使用知识图完成算法(即transe,Distmult和Complex)训练,以预测可能有助于AD治疗或预防的候选者。在三个知识图完成模型中,Transe的表现优于其他两个(MR = 13.45,命中@1 = 0.306)。我们利用时间布置技术进一步评估预测结果。我们找到了由模型预测的大多数排名最高的候选人的支持证据,这表明我们的方法可以为可靠的新知识提供信息。本文表明,我们的图形挖掘模型可以预测AD与其他实体之间的可靠新关系(即饮食补充剂,化学药品和药物)。构建的知识图可以促进数据驱动的知识发现和新颖假设的产生。

To date, there are no effective treatments for most neurodegenerative diseases. Knowledge graphs can provide comprehensive and semantic representation for heterogeneous data, and have been successfully leveraged in many biomedical applications including drug repurposing. Our objective is to construct a knowledge graph from literature to study relations between Alzheimer's disease (AD) and chemicals, drugs and dietary supplements in order to identify opportunities to prevent or delay neurodegenerative progression. We collected biomedical annotations and extracted their relations using SemRep via SemMedDB. We used both a BERT-based classifier and rule-based methods during data preprocessing to exclude noise while preserving most AD-related semantic triples. The 1,672,110 filtered triples were used to train with knowledge graph completion algorithms (i.e., TransE, DistMult, and ComplEx) to predict candidates that might be helpful for AD treatment or prevention. Among three knowledge graph completion models, TransE outperformed the other two (MR = 13.45, Hits@1 = 0.306). We leveraged the time-slicing technique to further evaluate the prediction results. We found supporting evidence for most highly ranked candidates predicted by our model which indicates that our approach can inform reliable new knowledge. This paper shows that our graph mining model can predict reliable new relationships between AD and other entities (i.e., dietary supplements, chemicals, and drugs). The knowledge graph constructed can facilitate data-driven knowledge discoveries and the generation of novel hypotheses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源