论文标题

通用$λ$ - 定性

Integrable branes in generalized $λ$-deformations

论文作者

Pappas, Georgios P. D.

论文摘要

我们在以$λ$限制的群体和coset空间构建的模型中搜索可集成的边界条件及其几何解释为$ d $ branes。使用Sigma-Model方法,我们发现WZW模型的文献中已知的所有共形Brane几何形状都求解了相应的边界条件,从而沿着我们的Sigma-Models的RG流持续为可集成的晶体。它们由众所周知的$ g $ - 结合课程组成,由排列的自动形态(置换式麸皮)和广义置换式麸皮组成。随后,我们研究了上述brane几何形状的特性,尤其是嵌入在紫外线和IR固定点之间插值的背景中的物质。

We search for integrable boundary conditions and their geometric interpretation as $D$-branes, in models constructed as generalized $λ$-deformations of products of group- and coset-spaces. Using the sigma-model approach, we find that all the conformal brane geometries known in the literature for a product of WZW models solve the corresponding boundary conditions, thus persisting as integrable branes along the RG flows of our sigma-models. They consist of the well known $G$-conjugacy classes, twisted $G$-conjugacy classes by a permutation automorphism (permutation branes) and generalized permutation branes. Subsequently, we study the properties of the aforementioned brane geometries, especially of those embedded in the backgrounds interpolating between the UV and IR fixed points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源