论文标题
定期驱动的晶格中的二阶拓扑绝缘子
Second-order topological insulator in periodically driven lattice
论文作者
论文摘要
高阶拓扑绝缘子(HOTI)是一种新型的拓扑系统,与传统的拓扑绝缘子相比具有特殊的块状对应关系。在这项工作中,我们提出了一项计划,以实现Ultracold Atom系统中的Floquet Hoti。通过定期与超级晶格的自旋依赖性驾驶和下一次接头的邻居D-Wave D-Wave样的各向异性耦合术语在不同的旋转组件之间,floquet二阶绝缘子具有四个零能量的角落状态,并出现了四个零能量的角落状态,它们的水平是无处不在的,它的耐水棒和展示的bubk topology and展览。此外,与最近邻居形式的各向异性耦合也将引起一些有趣的拓扑现象,例如分别针对两种不同类型的晶格结构的非血统的角状态和拓扑半学。我们的方案可能会深入了解合成系统中不同类型的高阶拓扑绝缘子的构建。它还提供了一个实验可行的平台来研究不同类型的拓扑状态之间的关系,并且将来可能会有广泛的应用。
The higher-order topological insulator (HOTI) is a new type of topological system which has special bulkedge correspondence compared with conventional topological insulators. In this work, we propose a scheme to realize Floquet HOTI in ultracold atom systems. With the combination of periodically spin-dependent driving of the superlattices and a next-next-nearest-neighbor d-wave-like anisotropic coupling term between different spin components, a Floquet second-order topological insulator with four zero-energy corner states emerges, whose Wannier bands are gapless and exhibit interesting bulk topology. Furthermore, the anisotropic coupling with nearest-neighbor form will also induce some intriguing topological phenomena, e.g. non-topologically protected corner states and topological semimetal for two different types of lattice structures respectively. Our scheme may give insight into the construction of different types of higher-order topological insulators in synthetic systems. It also provides an experimentally feasible platform to research the relations between different types of topological states and may have a wide range of applications in future.