论文标题

检查前列腺癌的整个幻灯片图像的病理学家的视觉注意分析

Visual attention analysis of pathologists examining whole slide images of Prostate cancer

论文作者

Chakraborty, Souradeep, Ma, Ke, Gupta, Rajarsi, Knudsen, Beatrice, Zelinsky, Gregory J., Saltz, Joel H., Samaras, Dimitris

论文摘要

我们研究病理学家使用数字显微镜检查前列腺癌组织的全扫描图像(WSI)的注意力。据我们所知,我们的研究是第一个详细报告病理学家在积累诊断信息时如何导航前列腺癌的WSI。我们收集了13个病理学家(5组病理学家(5个泌尿生殖器(GU)专家和8位普通病理学家)的13位病理学家的幻灯片导航数据(即视口位置,放大率和时间),并产生了视觉注意力图热图和扫描路径。每个病理学家检查了TCGA PRAD数据集的五个WSI,这些WSIS是由GU病理学专家选择的。在检查每个WSI后,我们检查并分析了每组病理学家的视觉注意力分布。为了量化病理学家注意力与WSI中癌症的证据之间的关系,我们从泌尿生殖器专家那里获得了肿瘤注释。我们使用这些注释来计算视觉注意力分布和注释肿瘤区域之间的重叠以识别强相关性。在这种分析的激励下,我们训练了一个深度学习模型,以预测对看不见的WSI的视觉关注。我们发现,通过使用各种空间和时间评估指标,我们的模型预测的注意力图与地面诚实的关注热图和肿瘤注释非常相关。

We study the attention of pathologists as they examine whole-slide images (WSIs) of prostate cancer tissue using a digital microscope. To the best of our knowledge, our study is the first to report in detail how pathologists navigate WSIs of prostate cancer as they accumulate information for their diagnoses. We collected slide navigation data (i.e., viewport location, magnification level, and time) from 13 pathologists in 2 groups (5 genitourinary (GU) specialists and 8 general pathologists) and generated visual attention heatmaps and scanpaths. Each pathologist examined five WSIs from the TCGA PRAD dataset, which were selected by a GU pathology specialist. We examined and analyzed the distributions of visual attention for each group of pathologists after each WSI was examined. To quantify the relationship between a pathologist's attention and evidence for cancer in the WSI, we obtained tumor annotations from a genitourinary specialist. We used these annotations to compute the overlap between the distribution of visual attention and annotated tumor region to identify strong correlations. Motivated by this analysis, we trained a deep learning model to predict visual attention on unseen WSIs. We find that the attention heatmaps predicted by our model correlate quite well with the ground truth attention heatmap and tumor annotations on a test set of 17 WSIs by using various spatial and temporal evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源