论文标题

双态浮光拓扑绝缘子

Bimorphic Floquet Topological Insulators

论文作者

Pyrialakos, Georgios G., Beck, Julius, Heinrich, Matthias, Maczewsky, Lukas J., Kantartzis, Nikolaos V., Khajavikhan, Mercedeh, Szameit, Alexander, Christodoulides, Demetrios N.

论文摘要

拓扑理论已经建立了一套新的规则,该规则在各种波动环境中控制运输特性。在明显的偏离既定方法中,这些方法通过专门定制离散耦合方案或螺旋晶格运动来诱导浮力拓扑阶段,我们介绍了一类新的双态浮雕拓扑拓扑机,该拓扑连接链利用具有定期调制的现场潜力来解锁系统中新拓扑特征的连接连接链。在探索原型Floquet Honeycomb晶格的“链驱动”概括时,我们确定了丰富的相结构,该结构可以托管与Chern型和异常的手掌状态同时相关的多个非平凡的拓扑阶段。在光子波导晶格中进行的实验揭示了一种独特而强烈的螺旋边缘状态,由于其起源于散装平坦带,可以以拓扑保护的方式将其设置为运动,或者随意停止,而不会损害其对单个lattice lattice lattice lattice lattice的依从性。

Topological theories have established a new set of rules that govern the transport properties in a wide variety of wave-mechanical settings. In a marked departure from the established approaches that induce Floquet topological phases by specifically tailored discrete coupling protocols or helical lattice motions, we introduce a new class of bimorphic Floquet topological insulators that leverage connective chains with periodically modulated on-site potentials to unlock new topological features in the system. In exploring a 'chain-driven' generalization of the archetypical Floquet honeycomb lattice, we identify a rich phase structure that can host multiple non-trivial topological phases associated simultaneously with both Chern-type and anomalous chiral states. Experiments carried out in photonic waveguide lattices reveal a unique and strongly confined helical edge state that, owing to its origin in bulk flat bands, can be set into motion in a topologically protected fashion, or halted at will, without compromising its adherence to individual lattice sites.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源