论文标题

致力于开发机器学习的技术,以生产紧凑的动力学模型

Toward Development of Machine Learned Techniques for Production of Compact Kinetic Models

论文作者

Kelly, Mark, Fortune, Mark, Bourque, Gilles, Dooley, Stephen

论文摘要

化学动力学模型是通过与多维模拟(例如计算流体动力学(CFD))耦合来开发和优化燃烧设备的重要组成部分。需要保持对现实的良好忠诚的低维动力学模型,其产量需要大量的人类时间成本和专家知识。在这里,我们提出了一种新型的自动化计算方法,以产生过度还原和优化的(紧凑)化学动力学模型。该算法称为机器学会了化学动力学(MLOCK)的优化,系统地散布了化学动力学模型的四个子模型中的每一个,以发现哪些术语的组合会导致良好的模型。首先使用常规机制还原获得了由N物种组成的虚拟反应网络。为了抵消模型性能的施加降低,对虚拟反应网络的每个节点(物种)之间重要连接(虚拟反应)的权重(虚拟反应速率常数)进行了数值优化,以在四个顺序相位上复制所选计算。 Mlock的第一个版本(MLOCK1.0)同时散布了所有三个虚拟ARRHENIUS反应速率的恒定参数,用于重要连接,并通过客观误差函数评估新参数的适用性,从而量化了每个紧凑型模型候选者对优化目标的计算中的误差,这可能包括详细的模型模型计算和//或实验实验数据。通过为甲烷空气燃烧的原型情况创建紧凑的模型来证明MLOCK1.0。结果表明,NUGMECH1.0由2,789种组成的详细模型可靠地压实至15种(节点),同时保留了详细模型计算的总体保真度约为87%,表现优于先前的先验均值。

Chemical kinetic models are an essential component in the development and optimisation of combustion devices through their coupling to multi-dimensional simulations such as computational fluid dynamics (CFD). Low-dimensional kinetic models which retain good fidelity to the reality are needed, the production of which requires considerable human-time cost and expert knowledge. Here, we present a novel automated compute intensification methodology to produce overly-reduced and optimised (compact) chemical kinetic models. This algorithm, termed Machine Learned Optimisation of Chemical Kinetics (MLOCK), systematically perturbs each of the four sub-models of a chemical kinetic model to discover what combinations of terms results in a good model. A virtual reaction network comprised of n species is first obtained using conventional mechanism reduction. To counteract the imposed decrease in model performance, the weights (virtual reaction rate constants) of important connections (virtual reactions) between each node (species) of the virtual reaction network are numerically optimised to replicate selected calculations across four sequential phases. The first version of MLOCK, (MLOCK1.0) simultaneously perturbs all three virtual Arrhenius reaction rate constant parameters for important connections and assesses the suitability of the new parameters through objective error functions, which quantify the error in each compact model candidate's calculation of the optimisation targets, which may be comprised of detailed model calculations and/or experimental data. MLOCK1.0 is demonstrated by creating compact models for the archetypal case of methane air combustion. It is shown that the NUGMECH1.0 detailed model comprised of 2,789 species is reliably compacted to 15 species (nodes), whilst retaining an overall fidelity of ~87% to the detailed model calculations, outperforming the prior state-of-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源