论文标题
可区分的preisach建模,用于表征和优化具有磁滞的加速器系统
Differentiable Preisach Modeling for Characterization and Optimization of Accelerator Systems with Hysteresis
论文作者
论文摘要
粒子加速器性能的未来改进基于越来越准确的加速器在线建模。在在线加速器模型中,磁性效应在用于控制算法的在线加速器模型中经常被忽略,即使在高精度加速器中表现出滞后的系统的可重复性错误也不可忽略。在这项工作中,我们将滞后的经典preisach模型与机器学习技术结合在一起,以有效地创建表现出滞后的任意系统的非参数,高保真模型。我们证明我们的技术准确地预测了物理加速器磁体中的滞后作用。我们还在实验上证明了如何在原位中使用这些方法,其中磁滞模型与梁响应的贝叶斯统计模型结合在一起,从而使加速器磁体中的磁滞性仅来自光束的测量值进行表征。此外,我们探索使用这些关节滞后束模型如何使我们在忽略滞后效应时能够克服优化性能限制。
Future improvements in particle accelerator performance is predicated on increasingly accurate online modeling of accelerators. Hysteresis effects in magnetic, mechanical, and material components of accelerators are often neglected in online accelerator models used to inform control algorithms, even though reproducibility errors from systems exhibiting hysteresis are not negligible in high precision accelerators. In this work, we combine the classical Preisach model of hysteresis with machine learning techniques to efficiently create non-parametric, high-fidelity models of arbitrary systems exhibiting hysteresis. We demonstrate that our technique accurately predicts hysteresis effects in physical accelerator magnets. We also experimentally demonstrate how these methods can be used in-situ, where the hysteresis model is combined with a Bayesian statistical model of the beam response, allowing characterization of hysteresis in accelerator magnets solely from measurements of the beam. Furthermore, we explore how using these joint hysteresis-beam models allows us to overcome optimization performance limitations when hysteresis effects are ignored.