论文标题

在2D中动态障碍中的运动计划的下边界框架

A Lower Bounding Framework for Motion Planning amid Dynamic Obstacles in 2D

论文作者

Ren, Zhongqiang, Rathinam, Sivakumar, Choset, Howie

论文摘要

这项工作考虑了2D中动态障碍物(MPDO)的运动计划问题,需要在沿着已知轨迹移动的动态障碍物中找到一个机器人和目标位置之间的点机器人的最小无碰撞轨迹。现有的方法,例如连续的Dijkstra范式,可以通过限制障碍物的形状或机器人的运动来找到最佳的解决方案,而这项工作并没有这样的假设。其他方法,例如基于搜索的计划者和基于抽样的方法可以计算出可行的解决方案,但不提供近似范围。由于找到最佳的MPDO是具有挑战性的,因此本文开发了一个框架,可以为最佳提供紧密的下限。这些边界充当最佳的代理,然后可以将其用于绑定可行解决方案与最佳的偏差。为此,我们开发了一个框架,该框架由(i)双层离散化方法组成,该方法将MPDO转换为放松的路径计划问题,以及(ii)可以解决轻松的问题以获得下限的算法。我们还提出了数值结果,以证实所提出的框架的性能。这些结果表明,在某些情况下,我们的方法获得的界限比基线方法更高两倍,表明该方法的潜在优势。

This work considers a Motion Planning Problem with Dynamic Obstacles (MPDO) in 2D that requires finding a minimum-arrival-time collision-free trajectory for a point robot between its start and goal locations amid dynamic obstacles moving along known trajectories. Existing methods, such as continuous Dijkstra paradigm, can find an optimal solution by restricting the shape of the obstacles or the motion of the robot, while this work makes no such assumptions. Other methods, such as search-based planners and sampling-based approaches can compute a feasible solution to this problem but do not provide approximation bounds. Since finding the optimum is challenging for MPDO, this paper develops a framework that can provide tight lower bounds to the optimum. These bounds act as proxies for the optimum which can then be used to bound the deviation of a feasible solution from the optimum. To accomplish this, we develop a framework that consists of (i) a bi-level discretization approach that converts the MPDO to a relaxed path planning problem, and (ii) an algorithm that can solve the relaxed problem to obtain lower bounds. We also present numerical results to corroborate the performance of the proposed framework. These results show that the bounds obtained by our approach for some instances are up to twice tighter than a baseline approach showcasing potential advantages of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源