论文标题

解开域和内容

Disentangling Domain and Content

论文作者

Iliescu, Dan Andrei, Mikhailiuk, Aliaksei, Wischik, Damon, Mantiuk, Rafal

论文摘要

许多现实世界数据集可以根据某些显着特征(例如按主题对图像进行分组,按字体进行分组等)分组。通常,机器学习任务要求这些功能与独立于分组的表现分开表示。例如,图像翻译需要在保留其内容的同时更改图像的样式。我们将这两种属性形式化为两个互补生成因素,称为“域”和“内容”,并以完全无监督的方式解决了它们的问题。为了实现这一目标,我们提出了一个受变量自动编码器启发的原则性,可推广的概率模型。我们的模型通过将一个输入的域与另一个输入的内容相结合,在复合任务上表现出最新的性能。独特的是,它可以以几次,无监督的方式执行此任务,而无需为域或内容提供明确的标签。通过组的编码器和新型的领域 - 融合损失的结合来学习分离的表示形式。

Many real-world datasets can be divided into groups according to certain salient features (e.g. grouping images by subject, grouping text by font, etc.). Often, machine learning tasks require that these features be represented separately from those manifesting independently of the grouping. For example, image translation entails changing the style of an image while preserving its content. We formalize these two kinds of attributes as two complementary generative factors called "domain" and "content", and address the problem of disentangling them in a fully unsupervised way. To achieve this, we propose a principled, generalizable probabilistic model inspired by the Variational Autoencoder. Our model exhibits state-of-the-art performance on the composite task of generating images by combining the domain of one input with the content of another. Distinctively, it can perform this task in a few-shot, unsupervised manner, without being provided with explicit labelling for either domain or content. The disentangled representations are learned through the combination of a group-wise encoder and a novel domain-confusion loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源