论文标题

一个简单的基于LP的近似算法,用于匹配增强问题

A Simple LP-Based Approximation Algorithm for the Matching Augmentation Problem

论文作者

Bamas, Etienne, Drygala, Marina, Svensson, Ola

论文摘要

匹配的增强问题(MAP)最近受到了极大的关注,这是朝着更好近似算法寻找便宜$ 2 $ - 边缘连接子图的重要一步。这已经达到了$ \ frac {5} {3} $ - 近似算法。但是,该算法及其分析是相当涉及的,并且没有与该问题众所周知的LP松弛相比,称为CUT LP。在本文中,我们提出了一种简单的算法,该算法以最佳的解决方案为指导,首先选择DFS树,然后通过计算该树的最佳增强来找到映射的解决方案。使用Extreme Point解决方案的属性,我们表明我们的算法始终(以多项式时间)返回(在多项式时间内),与CUT LP相比,算法的算法大于2美元。因此,我们还获得了这种自然放松的整体差距的改进的上限。

The Matching Augmentation Problem (MAP) has recently received significant attention as an important step towards better approximation algorithms for finding cheap $2$-edge connected subgraphs. This has culminated in a $\frac{5}{3}$-approximation algorithm. However, the algorithm and its analysis are fairly involved and do not compare against the problem's well-known LP relaxation called the cut LP. In this paper, we propose a simple algorithm that, guided by an optimal solution to the cut LP, first selects a DFS tree and then finds a solution to MAP by computing an optimum augmentation of this tree. Using properties of extreme point solutions, we show that our algorithm always returns (in polynomial time) a better than $2$-approximation when compared to the cut LP. We thereby also obtain an improved upper bound on the integrality gap of this natural relaxation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源