论文标题
$ n $ - 分段系统中的强量子非局部性
Strong quantum nonlocality in $N$-partite systems
论文作者
论文摘要
如果子系统的每两十六分区都在本地不可约束,则一组多部分正交量子状态是强烈的非定位。莱特牧师。 122,040403(2019)]。尽管该属性已在三,四方和五边形的系统中显示,但是当$ n $ n \ geq 6 $时,在$ n $ - 分段系统中存在强烈的非本地集合仍然未知。在本文中,我们成功地表明,一套强烈的非本地正交纠缠状态存在于$(\ Mathbb {c}^d)^{\ otimes n} $中,用于所有$ n \ geq 3 $和$ d \ geq 2 $,这首先揭示了强大的Quantum nontolloclocatity in Ceneral $ n $ n $ n $ -parterite。对于$ n = 3 $或$ 4 $和$ d \ geq 3 $,我们提出了一个由真正的纠缠状态组成的强烈非本地集,其尺寸比任何已知的强烈非局部正交产品集都小。最后,我们将强大的量子非局部性与信息的本地隐藏联系起来。
A set of multipartite orthogonal quantum states is strongly nonlocal if it is locally irreducible for every bipartition of the subsystems [Phys. Rev. Lett. 122, 040403 (2019)]. Although this property has been shown in three-, four- and five-partite systems, the existence of strongly nonlocal sets in $N$-partite systems remains unknown when $N\geq 6$. In this paper, we successfully show that a strongly nonlocal set of orthogonal entangled states exists in $(\mathbb{C}^d)^{\otimes N}$ for all $N\geq 3$ and $d\geq 2$, which for the first time reveals the strong quantum nonlocality in general $N$-partite systems. For $N=3$ or $4$ and $d\geq 3$, we present a strongly nonlocal set consisting of genuinely entangled states, which has a smaller size than any known strongly nonlocal orthogonal product set. Finally, we connect strong quantum nonlocality with local hiding of information as an application.