论文标题

粘附底物上的二维晶体均匀横向横向压力

Two-dimensional crystals on adhesive substrates subjected to uniform transverse pressure

论文作者

Dai, Zhaohe, Rao, Yifan, Lu, Nanshu

论文摘要

在这项工作中,我们认为当将二维(2D)晶体转移到带有气体或被困在晶体覆盖界面的气体或液体的基板上时,可以自发形成的气泡。可以用粘合剂底物上的薄纸描述基础力学,而被困的流体施加了均匀的横向压力。使这个显然简单的问题复杂的原因是几何,界面,弹性和不稳定性之间的丰富相互作用。特别是,广泛的小规模实验表明,气泡周围的2D晶体可以粘附在底物上,并在基板上滑动。径向向内的滑动会导致箍压缩到2D晶体,这可能会利用皱纹的不稳定性来放松或部分放松压缩。我们提出了一个理论模型,以了解由于非线性几何形状,粘附,滑动和气泡系统中皱纹的组合,即使是线性弹性2D晶体的复杂行为。我们表明,这种理解不仅成功地预测了自发气泡的几何形状,而且还揭示了2D晶体的应变耦合物理,例如石墨烯气泡中的假磁场。

In this work we consider bubbles that can form spontaneously when a two-dimensional (2D) crystal is transferred to a substrate with gases or liquids trapped at the crystal-substrate interface. The underlying mechanics may be described by a thin sheet on an adhesive substrate with the trapped fluid applying uniform transverse pressure. What makes this apparently simple problem complex is the rich interplay among geometry, interface, elasticity and instability. Particularly, extensive small-scale experiments have shown that the 2D crystal surrounding a bubble can adhere to and, meanwhile, slide on the substrate. The radially inward sliding causes hoop compression to the 2D crystal which may exploit wrinkling instabilities to relax or partially relax the compression. We present a theoretical model to understand the complex behaviors of even a linearly elastic 2D crystal due to the combination of nonlinear geometry, adhesion, sliding, and wrinkling in bubble systems. We show that this understanding not only successfully predicts the geometry of a spontaneous bubble but also reveals the strain-coupled physics of 2D crystals, e.g., the pseudomagnetic fields in graphene bubbles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源