论文标题

基准在线序列到序列和基于角色的笔迹识别来自IMU增强的笔

Benchmarking Online Sequence-to-Sequence and Character-based Handwriting Recognition from IMU-Enhanced Pens

论文作者

Ott, Felix, Rügamer, David, Heublein, Lucas, Hamann, Tim, Barth, Jens, Bischl, Bernd, Mutschler, Christopher

论文摘要

目的。笔迹是日常生活中最常发生的模式之一,随之而来的是具有挑战性的应用,例如手写识别(HWR),作家识别和签名验证。与仅使用空间信息(即图像)的离线HWR相反,在线HWR(ONHWR)使用更丰富的时空信息(即轨迹数据或惯性数据)。尽管存在许多离线HWR数据集,但只有很少的数据可用于开发纸质上的ONHWR方法,因为它需要硬件集成的笔。方法。本文为实时序列到序列(SEQ2SEQ)学习和基于单个字符的识别提供了数据和基准模型。我们的数据通过传感器增强的圆珠笔记录,从三轴加速度计,陀螺仪,磁力计和100 Hz的力传感器产生传感器数据流。我们提出了各种数据集,包括与作者依赖和作者无关的任务的方程式和单词。我们的数据集允许在平板电脑上的经典ONHWR和用传感器增强的笔进行比较。我们使用经常性和时间卷积网络和变压器与连接派时间分类(CTC)损失(CTC)损失(CE)损失,为SEQ2SEQ和基于单个字符的HWR提供了评估基准。结果。我们的卷积网络与Bilstms相结合,基于序列的分类任务与基于变压器的架构相当,与28种最先进的技术相比,基于序列的分类任务的成立时间相当。时间序列增加方法改善了基于序列的任务,我们表明CE变体可以改善单个分类任务。

Purpose. Handwriting is one of the most frequently occurring patterns in everyday life and with it come challenging applications such as handwriting recognition (HWR), writer identification, and signature verification. In contrast to offline HWR that only uses spatial information (i.e., images), online HWR (OnHWR) uses richer spatio-temporal information (i.e., trajectory data or inertial data). While there exist many offline HWR datasets, there is only little data available for the development of OnHWR methods on paper as it requires hardware-integrated pens. Methods. This paper presents data and benchmark models for real-time sequence-to-sequence (seq2seq) learning and single character-based recognition. Our data is recorded by a sensor-enhanced ballpoint pen, yielding sensor data streams from triaxial accelerometers, a gyroscope, a magnetometer and a force sensor at 100 Hz. We propose a variety of datasets including equations and words for both the writer-dependent and writer-independent tasks. Our datasets allow a comparison between classical OnHWR on tablets and on paper with sensor-enhanced pens. We provide an evaluation benchmark for seq2seq and single character-based HWR using recurrent and temporal convolutional networks and Transformers combined with a connectionist temporal classification (CTC) loss and cross-entropy (CE) losses. Results. Our convolutional network combined with BiLSTMs outperforms Transformer-based architectures, is on par with InceptionTime for sequence-based classification tasks, and yields better results compared to 28 state-of-the-art techniques. Time-series augmentation methods improve the sequence-based task, and we show that CE variants can improve the single classification task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源