论文标题

分支盖和理性同源球

Branched covers and rational homology balls

论文作者

Livingston, Charles

论文摘要

三个球体中的一致结组包含一个由二的元素产生的无限亚组,每个子组由一个结的元素代表,其特性为每个n> 0,s^3的n折环盖在k上分支在k上绑定了一个合理同源球。这意味着规范同态的内核从结的一致性群到无限的理性同源性共生组的无限直接总和(通过Prime-Power分支封面定义)包含一个无限产生的两个TOSTORION亚组。

The concordance group of knots in the three-sphere contains an infinite subgroup generated by elements of order two, each one of which is represented by a knot K with the property that for every n > 0, the n-fold cyclic cover of S^3 branched over K bounds a rational homology ball. This implies that the kernel of the canonical homomorphism from the knot concordance group to the infinite direct sum of rational homology cobordism groups (defined via prime-power branched covers) contains an infinitely generated two-torsion subgroup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源