论文标题
矢量值Lipschitz函数空间中的Daugavet属性
The Daugavet property in spaces of vector-valued Lipschitz functions
论文作者
论文摘要
我们证明,如果公制空间$ m $具有有限的CEP,则$ \ Mathcal f(m)\ wideHat {\ otimes}_πx$具有每个非零Banach Space $ x $的Daugavet属性。例如,如果$ m $是一个偶尔的二元空间,则适用于$ l_1(μ)$空间。如果$ m $具有CEP,则$ l(\ Mathcal f(m),x)= \ lip(m,x)$具有每一个非零的banach space $ x $的Daugavet属性,这表明$ m $是Injextive Banach Space或Hilbert Space的convex子集时的情况。
We prove that if a metric space $M$ has the finite CEP then $\mathcal F(M)\widehat{\otimes}_π X$ has the Daugavet property for every non-zero Banach space $X$. This applies, for instance, if $M$ is a Banach space whose dual is isometrically an $L_1(μ)$ space. If $M$ has the CEP then $L(\mathcal F(M),X)=\Lip(M,X)$ has the Daugavet property for every non-zero Banach space $X$, showing that this is the case when $M$ is an injective Banach space or a convex subset of a Hilbert space.