论文标题

在线升级的高级协作网络,用于单张图像

Online-updated High-order Collaborative Networks for Single Image Deraining

论文作者

Wang, Cong, Pan, Jinshan, Wu, Xiao-Ming

论文摘要

对于某些下游人工智能应用,例如视频监视和自动驾驶系统,单图像是一项重要且具有挑战性的任务。大多数现有的基于深度学习的方法都限制了网络以生成der映像,但是很少有人探索中间层,不同级别和不同模块的特征,这些功能有益于降雨条纹的去除。在本文中,我们提出了一个具有多尺度紧凑约束的高级协作网络和一个双向尺度尺度 - 与内在相似性挖掘模块,以利用外部和内部的深网络中的特征来删除雨条。在外部,我们设计了一个以协作方式训练的三个子网络的框架,在此底部网络将中间功能传输到中间网络,该特征还从顶部网络接收了较浅的下雨特征,并将功能发送到底部网络。在内部,我们在深网的中间层上执行多尺度紧凑的约束,以通过Laplacian金字塔学习有用的功能。此外,我们开发了一个双向规模相似性挖掘模块,以直接和最新的方式探索不同尺度的特征。为了改善现实世界图像上的模型性能,我们提出了一种在线更高的学习方法,该方法使用现实世界中的下雨图像来微调网络并以一种自我监督的方式更新deraining结果。广泛的实验表明,我们提出的方法对五个公共合成数据集和一个现实世界数据集的11种最先进的方法表现出色。源代码将在\ url {https://supercong94.wixsite.com/supercong94}上获得。

Single image deraining is an important and challenging task for some downstream artificial intelligence applications such as video surveillance and self-driving systems. Most of the existing deep-learning-based methods constrain the network to generate derained images but few of them explore features from intermediate layers, different levels, and different modules which are beneficial for rain streaks removal. In this paper, we propose a high-order collaborative network with multi-scale compact constraints and a bidirectional scale-content similarity mining module to exploit features from deep networks externally and internally for rain streaks removal. Externally, we design a deraining framework with three sub-networks trained in a collaborative manner, where the bottom network transmits intermediate features to the middle network which also receives shallower rainy features from the top network and sends back features to the bottom network. Internally, we enforce multi-scale compact constraints on the intermediate layers of deep networks to learn useful features via a Laplacian pyramid. Further, we develop a bidirectional scale-content similarity mining module to explore features at different scales in a down-to-up and up-to-down manner. To improve the model performance on real-world images, we propose an online-update learning approach, which uses real-world rainy images to fine-tune the network and update the deraining results in a self-supervised manner. Extensive experiments demonstrate that our proposed method performs favorably against eleven state-of-the-art methods on five public synthetic datasets and one real-world dataset. The source code will be available at \url{https://supercong94.wixsite.com/supercong94}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源