论文标题
用于识别自发损坏的对称性的组等级自动编码器
A Group-Equivariant Autoencoder for Identifying Spontaneously Broken Symmetries
论文作者
论文摘要
我们介绍了组等级自动编码器(GE-AUTOENCODER) - 一种深神经网络(DNN)方法,该方法通过确定在每个温度下自发地损坏了汉密尔顿的哪种对称性来定位相边界。我们使用组理论推断系统的哪些对称性在所有阶段保持完整,然后使用此信息来限制GE-AutoEncoder的参数,以便编码器学习到这些“永无止境”对称性的订单参数不变。此过程会大大减少自由参数的数量,因此GE-AutoEncoder大小与系统大小无关。我们在GE-AutoEncoder的损耗函数中包括对称正则化项,以便学习顺序参数也与系统的其余对称性一样。通过检查学习顺序参数转换的组表示,我们就可以提取有关相关自发对称性破坏的信息。我们在2D经典的铁磁和抗铁磁磁性模型上测试了GE-AutoCoder,发现GE-AutoCododer(1)准确地确定了哪些对称性在每个温度下自发损坏。 (2)与对称性基线自动编码器相比,以更高的精度,鲁棒性和时间效率估算热力学极限的临界温度; (3)检测出比基线方法更灵敏度的外部对称磁场的存在。最后,我们描述了各种关键的实施细节,包括一种从训练有素的自动编码器中提取关键温度估计的新方法,以及对公平模型比较所需的DNN初始化和学习率设置的计算。
We introduce the group-equivariant autoencoder (GE-autoencoder) -- a deep neural network (DNN) method that locates phase boundaries by determining which symmetries of the Hamiltonian have spontaneously broken at each temperature. We use group theory to deduce which symmetries of the system remain intact in all phases, and then use this information to constrain the parameters of the GE-autoencoder such that the encoder learns an order parameter invariant to these ``never-broken'' symmetries. This procedure produces a dramatic reduction in the number of free parameters such that the GE-autoencoder size is independent of the system size. We include symmetry regularization terms in the loss function of the GE-autoencoder so that the learned order parameter is also equivariant to the remaining symmetries of the system. By examining the group representation by which the learned order parameter transforms, we are then able to extract information about the associated spontaneous symmetry breaking. We test the GE-autoencoder on the 2D classical ferromagnetic and antiferromagnetic Ising models, finding that the GE-autoencoder (1) accurately determines which symmetries have spontaneously broken at each temperature; (2) estimates the critical temperature in the thermodynamic limit with greater accuracy, robustness, and time-efficiency than a symmetry-agnostic baseline autoencoder; and (3) detects the presence of an external symmetry-breaking magnetic field with greater sensitivity than the baseline method. Finally, we describe various key implementation details, including a new method for extracting the critical temperature estimate from trained autoencoders and calculations of the DNN initialization and learning rate settings required for fair model comparisons.