论文标题
指数概括的涡流
Exponentially generalized vortex
论文作者
论文摘要
在这项工作中,我们提出了一个指数概括的Abelian模型。我们研究了与Maxwell和Chern-Simons领域相连的模型中的涡流结构的存在。我们选择研究分别耦合到Maxwell项和Chern-Simons项的模型中复杂标量场的动力学。为此,我们在两种情况下分析了bogomol'nyi方程以描述静态场配置。当我们注意到标量字段解决方案在麦克斯韦的情况下以$ν^{2} $的一倍为倍时,就会出现一个有趣的结果。另一方面,对于Chern-simons,该领域的解决方案的退化为$κν^{2}/a_ {s} $。最后,我们以数值为单位求解Bogomol'nyi方程并讨论我们的结果。
In this work, we propose an exponentially generalized Abelian model. We investigated the presence of vortex structures in models coupled to Maxwell and Chern-Simons fields. We chose to investigate the dynamics of the complex scalar field in models coupled separately to the Maxwell term and the Chern-Simons term. For this, we analyze the Bogomol'nyi equations in both cases to describe the static field configurations. An interesting result appears when we note that scalar field solutions generate degenerate minimum energy configurations by a factor of $ν^{2}$ in Maxwell's case. On the other hand, in the case of Chern-Simons, the solutions in this sector are degenerate by a factor of $κν^{2}/a_{s}$. Finally, we solve the Bogomol'nyi equations numerically and discuss our results.