论文标题

Weyl节点线半度法中的自旋三键超导性

Spin-triplet superconductivity in Weyl nodal-line semimetals

论文作者

Shang, Tian, Ghosh, Sudeep K., Smidman, Michael, Gawryluk, Dariusz Jakub, Baines, Christopher, Wang, An, Xie, Wu, Chen, Ye, Ajeesh, Mukkattu O., Nicklas, Michael, Pomjakushina, Ekaterina, Medarde, Marisa, Shi, Ming, Annett, James F., Yuan, Huiqiu, Quintanilla, Jorge, Shiroka, Toni

论文摘要

拓扑半学是三维材料,具有对称性保护的无质量散装激发。作为一种特殊情况,Weyl节点线半学在没有反转或分裂时间对称性的材料中实现,并且具有大量的淋巴结线。材料,lanisi,laptsi和laptge的111个家庭属于该类别。在这里,通过将MUON自旋旋转和放松与热力学测量相结合,我们发现这些材料表现出完全开发的超导基态,同时自发地破坏了超导过渡时的时间反转对称性。由于时间反向对称性对于保护正常状态拓扑至关重要,因此进入超导状态时的破裂应显着导致拓扑相变。通过为正常状态带结构开发最小模型并假设纯粹的自旋三个配对,我们表明可以准确描述整个家族的超导性能。我们的结果表明,此处报道的111家户主提供了一个理想的测试床,用于研究Weyl nodal-line Fermions的外来特性与非常规的超导性之间的丰富相互作用。

Topological semimetals are three dimensional materials with symmetry-protected massless bulk excitations. As a special case, Weyl nodal-line semimetals are realized in materials either having no inversion or broken time-reversal symmetry and feature bulk nodal lines. The 111-family of materials, LaNiSi, LaPtSi and LaPtGe (all lacking inversion symmetry), belong to this class. Here, by combining muon-spin rotation and relaxation with thermodynamic measurements, we find that these materials exhibit a fully-gapped superconducting ground state, while spontaneously breaking time-reversal symmetry at the superconducting transition. Since time-reversal symmetry is essential for protecting the normal-state topology, its breaking upon entering the superconducting state should remarkably result in a topological phase transition. By developing a minimal model for the normal-state band structure and assuming a purely spin-triplet pairing, we show that the superconducting properties across the family can be described accurately. Our results demonstrate that the 111-family reported here provides an ideal test-bed for investigating the rich interplay between the exotic properties of Weyl nodal-line fermions and unconventional superconductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源