论文标题

迁移陷阱是开普勒二分法的根本原因

Migration traps as the root cause of the Kepler dichotomy

论文作者

Zawadzki, Brianna, Carrera, Daniel, Ford, Eric B.

论文摘要

通常假定“开普勒二分法”(在开普勒目录中具有单个检测到的透明行星的行星系统的明显过剩 - 反映了行星轨道相互倾斜的固有双峰性。在对行星形成进行了600次模拟之后,然后进行了模拟的开普勒观测,我们建议明显的二分法反映出迁移量的差异以及行星半轴轴分为不同的“簇”。我们发现我们的模拟高质量系统迅速迁移,使更多的行星进入轨道时期不到200天。外行星通常被捕获在一个迁移陷阱中 - 一系列行星质量和位置,其中主要的联合旋转扭矩阻止了内向迁移 - 将系统拆分为两个簇。如果簇足够分离,则内部簇保持动态冷,从而导致相互倾斜低,并且检测到多个透射行星的概率更高。相反,我们的模拟低质量系统通常会在200天内带来更少的行星,形成一个迅速变得动态不稳定的单个群集,从而导致碰撞和高度相互倾向。我们为明显的开普勒二分法提出了另一种解释,其中在形成过程中迁移陷阱导致开普勒检测窗口内的行星较少,而相互倾斜仅起着次要作用。如果我们的情况是正确的,则开普勒的stips(具有紧密包装的内行星的系统)是一个行星样本,可以通过共旋转陷阱逃脱捕获,它们的尺寸可能是对原始碟片结构的有价值的探测器。

It is often assumed that the "Kepler dichotomy" -- the apparent excess of planetary systems with a single detected transiting planet in the Kepler catalog -- reflects an intrinsic bimodality in the mutual inclinations of planetary orbits. After conducting 600 simulations of planet formation followed by simulated Kepler observations, we instead propose that the apparent dichotomy reflects a divergence in the amount of migration and the separation of planetary semimajor axes into distinct "clusters". We find that our simulated high-mass systems migrate rapidly, bringing more planets into orbital periods of less than 200 days. The outer planets are often caught in a migration trap -- a range of planet masses and locations in which a dominant co-rotation torque prevents inward migration -- which splits the system into two clusters. If clusters are sufficiently separated, the inner cluster remains dynamically cold, leading to low mutual inclinations and a higher probability of detecting multiple transiting planets. Conversely, our simulated low-mass systems typically bring fewer planets inside 200 days, forming a single cluster that quickly becomes dynamically unstable, leading to collisions and high mutual inclinations. We propose an alternative explanation for the apparent Kepler dichotomy in which migration traps during formation lead to fewer planets inside the Kepler detection window, and where mutual inclinations play only a secondary role. If our scenario is correct, then Kepler's STIPs (Systems with Tightly-packed Inner Planets) are a sample of planets that escaped capture by co-rotation traps, and their sizes may be a valuable probe into the structure of protoplanetary discs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源