论文标题
图像到图像回归,具有无分布的不确定性定量和成像中的应用
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging
论文作者
论文摘要
图像到图像回归是一项重要的学习任务,经常用于生物成像中。但是,当前的算法通常不提供防止模型的错误和幻觉的统计保证。为了解决这个问题,我们开发了不确定性量化技术,并为图像到图像回归问题提供了严格的统计保证。特别是,我们展示了如何在每个像素周围得出不确定性间隔,以保证以用户指定的置信度概率包含真实值。我们的方法与任何基本机器学习模型(例如神经网络)结合使用,并赋予其正式的数学保证 - 无论真正的未知数据分布或模型的选择如何。此外,它们易于实施和计算便宜。我们在三个图像到图像回归任务上评估了我们的程序:定量相显微镜,加速磁共振成像和果蝇大脑脑的超分辨率透射电子显微镜。
Image-to-image regression is an important learning task, used frequently in biological imaging. Current algorithms, however, do not generally offer statistical guarantees that protect against a model's mistakes and hallucinations. To address this, we develop uncertainty quantification techniques with rigorous statistical guarantees for image-to-image regression problems. In particular, we show how to derive uncertainty intervals around each pixel that are guaranteed to contain the true value with a user-specified confidence probability. Our methods work in conjunction with any base machine learning model, such as a neural network, and endow it with formal mathematical guarantees -- regardless of the true unknown data distribution or choice of model. Furthermore, they are simple to implement and computationally inexpensive. We evaluate our procedure on three image-to-image regression tasks: quantitative phase microscopy, accelerated magnetic resonance imaging, and super-resolution transmission electron microscopy of a Drosophila melanogaster brain.