论文标题

Fuchsian DPW的Lawson表面潜力

Fuchsian DPW potentials for Lawson surfaces

论文作者

Heller, Lynn, Heller, Sebastian

论文摘要

lawson表面$ξ_{1,g} $ g $的$是通过旋转和反映高原解决方案$ f_t $相对于特定的地理$ 4 $ -4 $ -GON $ -GON $γ_T$,其中$ t = \ t = \ tfrac {1}} {1} {2G+2} $是$γ__的角度。在本文中,我们将高原解决方案的存在和规律性结合在$ t \ in(0,\ tfrac {1} {4})中的$ f_t $与有关fuchsian Specter of 4-puncture Sphere上的模态空间的拓扑信息,以获得A Fuchsian Dpw潜在的$η_t$的存在\ tfrac {1} {4} $。这导致了一种算法,可以共同参数所有Lawson表面$ξ_{1,G} $。

The Lawson surfaces $ξ_{1,g}$ of genus $g$ are constructed by rotating and reflecting the Plateau solution $f_t$ with respect to a particular geodesic $4$-gon $Γ_t$ along its boundary, where $t= \tfrac{1}{2g+2}$ is an angle of $Γ_t$. In this paper we combine the existence and regularity of the Plateau solution $f_t$ in $t \in (0, \tfrac{1}{4})$ with topological information about the moduli space of Fuchsian systems on the 4-puncture sphere to obtain existence of a Fuchsian DPW potential $η_t$ for every $f_t$ with $t\in(0, \tfrac{1}{4}]$. Moreover, the coefficients of $η_t$ are shown to depend real analytically on $t$. This implies that the Taylor approximation of the DPW potential $η_t$ and of the area obtained at $t=0$ found in \cite{HHT2} determines these quantities for all $ξ_{1,g}$. In particular, this leads to an algorithm to conformally parametrize all Lawson surfaces $ξ_{1,g}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源