论文标题

溃疡性结肠炎严重程度估计的距离距离加权跨透明度损失

Class Distance Weighted Cross-Entropy Loss for Ulcerative Colitis Severity Estimation

论文作者

Polat, Gorkem, Ergenc, Ilkay, Kani, Haluk Tarik, Alahdab, Yesim Ozen, Atug, Ozlen, Temizel, Alptekin

论文摘要

在用于测量溃疡性结肠炎的内窥镜活性的评分系统中,例如蛋黄酱内镜评分或溃疡性结肠炎内镜指数严重程度,水平随疾病活动的严重程度而增加。分数中的相对排名使其成为序数回归问题。另一方面,大多数研究都使用分类跨膜损失函数来训练深度学习模型,这对于序数回归问题并不是最佳的。在这项研究中,我们提出了一种新型的损失函数,即距离距离加权的跨凝结(CDW-CE),该函数尊重班级的顺序,并在计算成本时考虑了类的距离。实验评估表明,接受CDW-CE训练的模型优于训练的模型,该模型是为序数回归问题而设计的常规分类跨膜和其他常用损失函数。此外,经过CDW-CE损失训练的模型的类激活图具有更大的歧视性,并且被域专家发现它们更合理。

In scoring systems used to measure the endoscopic activity of ulcerative colitis, such as Mayo endoscopic score or Ulcerative Colitis Endoscopic Index Severity, levels increase with severity of the disease activity. Such relative ranking among the scores makes it an ordinal regression problem. On the other hand, most studies use categorical cross-entropy loss function to train deep learning models, which is not optimal for the ordinal regression problem. In this study, we propose a novel loss function, class distance weighted cross-entropy (CDW-CE), that respects the order of the classes and takes the distance of the classes into account in calculation of the cost. Experimental evaluations show that models trained with CDW-CE outperform the models trained with conventional categorical cross-entropy and other commonly used loss functions which are designed for the ordinal regression problems. In addition, the class activation maps of models trained with CDW-CE loss are more class-discriminative and they are found to be more reasonable by the domain experts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源