论文标题
基于订单的结构学习而没有得分等效
Order-based Structure Learning without Score Equivalence
论文作者
论文摘要
我们提出了结构学习问题的经验贝叶斯公式,其中先前的规范假设所有节点变量都具有相同的误差方差,这是已知的假设,以确保基本因果定向的无循环图(DAG)的可识别性。为了促进有效的后验计算,我们通过最佳DAG模型近似每种订购的后验概率,这自然会导致基于订单的马尔可夫链蒙特卡洛(MCMC)算法。在允许异质误差方差的条件下证明了在高维设置中的强大选择一致性,理论上研究了采样器的混合行为。此外,我们提出了一种新的迭代自上而下算法,该算法迅速为结构学习问题提供了近似的解决方案,可用于初始化MCMC采样器。我们证明,我们的方法在各种仿真设置下都优于其他最先进的算法,并通过单细胞实际数据研究结论,该研究说明了所提出的方法的实际优势。
We propose an empirical Bayes formulation of the structure learning problem, where the prior specification assumes that all node variables have the same error variance, an assumption known to ensure the identifiability of the underlying causal directed acyclic graph (DAG). To facilitate efficient posterior computation, we approximate the posterior probability of each ordering by that of a best DAG model, which naturally leads to an order-based Markov chain Monte Carlo (MCMC) algorithm. Strong selection consistency for our model in high-dimensional settings is proved under a condition that allows heterogeneous error variances, and the mixing behavior of our sampler is theoretically investigated. Further, we propose a new iterative top-down algorithm, which quickly yields an approximate solution to the structure learning problem and can be used to initialize the MCMC sampler. We demonstrate that our method outperforms other state-of-the-art algorithms under various simulation settings, and conclude the paper with a single-cell real-data study illustrating practical advantages of the proposed method.