论文标题
与因果土匪的自适应利用D-Separator
Adaptively Exploiting d-Separators with Causal Bandits
论文作者
论文摘要
多臂匪徒问题提供了一个框架,以确定一系列重复实验的最佳干预措施。如果没有其他假设,最小值的最佳性能(通过累积遗憾衡量)就可以很好地理解。通过访问其他观察到的变量,可以从结果中分离干预措施(即,它们是D-分离器),最近的“因果匪徒”算法证明会引起遗憾。但是,在实践中,希望观察到的变量是否是d分隔者,这是不可知的。理想情况下,算法应具有自适应;也就是说,在甲骨文的存在或不存在d-separator的情况下,执行几乎和算法一样。在这项工作中,我们对这种适应性的概念进行了形式化和研究,并提供了一种新颖的算法,该算法同时实现(a)观察到D分离器时,可以实现最佳遗憾,从而改善了经典的最小值算法,并且(b)比最近的Causal bastit算法要小得多,而在近期观察的coasusal bandit算法中,当所经过的变量变量不是d-separbles时。至关重要的是,我们的算法不需要任何观察到D-Separator的Oracle知识。我们还将这种适应性推广到其他条件,例如前门标准。
Multi-armed bandit problems provide a framework to identify the optimal intervention over a sequence of repeated experiments. Without additional assumptions, minimax optimal performance (measured by cumulative regret) is well-understood. With access to additional observed variables that d-separate the intervention from the outcome (i.e., they are a d-separator), recent "causal bandit" algorithms provably incur less regret. However, in practice it is desirable to be agnostic to whether observed variables are a d-separator. Ideally, an algorithm should be adaptive; that is, perform nearly as well as an algorithm with oracle knowledge of the presence or absence of a d-separator. In this work, we formalize and study this notion of adaptivity, and provide a novel algorithm that simultaneously achieves (a) optimal regret when a d-separator is observed, improving on classical minimax algorithms, and (b) significantly smaller regret than recent causal bandit algorithms when the observed variables are not a d-separator. Crucially, our algorithm does not require any oracle knowledge of whether a d-separator is observed. We also generalize this adaptivity to other conditions, such as the front-door criterion.