论文标题
一致性的总和涉及三个二项式系数的产品
Congruences for sums involving products of three binomial coefficients
论文作者
论文摘要
令$ p> 3 $为素数,让$ a $为有理$ p $ - ad的整数,使用WZ方法,我们建立了$$ \ sum_ {k = 0}^{p-1}^{p-1} \ binom ak \ binom ak \ binom ak \ binom {-1-a-a} k \ binom {-1-a} k \ binom {k \ binom {k \ binom} {w(k)} {4^k},$$其中$$ w(k)= 1,\ frac 1 {k+1},\ frac 1 {(k+1)^2},\ frac 1 {(k+1)^3} k,k^2,k^3,\ frac 1 {a+k},\ frac 1 {a+k-1}。
Let $p>3$ be a prime, and let $a$ be a rational $p$-adic integer, using WZ method we establish the congruences modulo $p^3$ for $$\sum_{k=0}^{p-1} \binom ak\binom{-1-a}k\binom{2k}k\frac {w(k)}{4^k},$$ where $$w(k)=1,\frac 1{k+1},\frac 1{(k+1)^2},\frac 1{(k+1)^3},\frac 1{2k-1},\frac 1{k+2}, \frac 1{k+3}, k,k^2,k^3,\frac 1{a+k},\frac 1{a+k-1}.$$ As consequences, taking $a=-\frac 12,-\frac 13,-\frac 14,-\frac 16$ we deduce many congruences modulo $p^3$ and so solve some conjectures posed by the author earlier.