论文标题
PCENET:学习不确定性的高维替代建模
PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty
论文作者
论文摘要
不确定性下的学习数据表示是一项重要的任务,它在众多科学计算和数据分析应用中出现。但是,不确定性量化技术在计算密集型上是非常昂贵的,对于高维数据而变得非常昂贵。在这项研究中,我们介绍了降低维度替代建模(DRSM)方法,以进行表示学习和不确定性量化,旨在处理中等至高维数据。该方法涉及两个阶段的学习过程:1)使用变异自动编码器学习输入数据分布的低维表示; 2)利用多项式混乱扩展(PCE)公式将低维分布映射到输出目标。该模型使我们能够(a)在低维的潜在空间中有效捕获系统动力学,(b)在不确定性,数据表示和输入分布之间的映射下学习,(c)估计高维数据系统中的这种不确定性,以及(d)(d)匹配输出分布的高阶时间;没有关于数据的任何先前的统计假设。提出了数值结果,以说明所提出的方法的性能。
Learning data representations under uncertainty is an important task that emerges in numerous scientific computing and data analysis applications. However, uncertainty quantification techniques are computationally intensive and become prohibitively expensive for high-dimensional data. In this study, we introduce a dimensionality reduction surrogate modeling (DRSM) approach for representation learning and uncertainty quantification that aims to deal with data of moderate to high dimensions. The approach involves a two-stage learning process: 1) employing a variational autoencoder to learn a low-dimensional representation of the input data distribution; and 2) harnessing polynomial chaos expansion (PCE) formulation to map the low dimensional distribution to the output target. The model enables us to (a) capture the system dynamics efficiently in the low-dimensional latent space, (b) learn under uncertainty, a representation of the data and a mapping between input and output distributions, (c) estimate this uncertainty in the high-dimensional data system, and (d) match high-order moments of the output distribution; without any prior statistical assumptions on the data. Numerical results are presented to illustrate the performance of the proposed method.