论文标题
投影测量足以回收非局部性
Projective measurements are sufficient for recycling nonlocality
论文作者
论文摘要
UNSHARP测量值被广泛视为回收几个顺序观察者之间共享的纠缠状态的非局部性的关键资源。与此相比,我们在这里表明,仅使用标准的投影测量值可以回收非局部性,而无需使用量子辅助。在关注CHSH不平等的情况下,我们确定在存在共同经典随机性的情况下,最大纠缠的两分四分位状态的铃铛参数中的最佳权衡。然后,我们发现非最大程度的纠缠状态使更大的顺序违规行为可能与标准CHSH方案进行对比。此外,我们表明,即使仅使用投影性测量和局部随机性,也可以回收非局部性。我们讨论了结果对顺序非局部性实验实现的含义。
Unsharp measurements are widely seen as the key resource for recycling the nonlocality of an entangled state shared between several sequential observers. Contrasting this, we here show that nonlocality can be recycled using only standard projective measurements, without using quantum ancillas. Focusing on the CHSH inequality, we determine the optimal trade-off in the Bell parameters for a maximally entangled two-qubit state in the presence of shared classical randomness. We then find that non-maximally entangled states make possible larger sequential violations, which contrasts the standard CHSH scenario. Furthermore, we show that nonlocality can be recycled even when only using projective measurements and local randomness. We discuss the implications of our results for experimental implementations of sequential nonlocality.