论文标题

将神经网络分解为相关函数的映射

Decomposing neural networks as mappings of correlation functions

论文作者

Fischer, Kirsten, René, Alexandre, Keup, Christian, Layer, Moritz, Dahmen, David, Helias, Moritz

论文摘要

了解深神经网络中信息处理的功能原理仍然是一个挑战,尤其是对于训练有素的,因此是非随机权重的网络。为了解决这个问题,我们研究了深馈网络实现的概率分布之间的映射。我们将此映射描述为分布的迭代转换,其中每个层中的非线性都在不同的相关函数范围之间传输信息。这使我们能够确定数据中的基本统计信息以及神经网络可以使用的不同信息表示。应用于XOR任务并将其应用于MNIST,我们表明相关性最高到二阶,主要捕获内部层中的信息处理,而输入层也从数据中提取了高阶相关性。该分析提供了分类的定量和可解释的观点。

Understanding the functional principles of information processing in deep neural networks continues to be a challenge, in particular for networks with trained and thus non-random weights. To address this issue, we study the mapping between probability distributions implemented by a deep feed-forward network. We characterize this mapping as an iterated transformation of distributions, where the non-linearity in each layer transfers information between different orders of correlation functions. This allows us to identify essential statistics in the data, as well as different information representations that can be used by neural networks. Applied to an XOR task and to MNIST, we show that correlations up to second order predominantly capture the information processing in the internal layers, while the input layer also extracts higher-order correlations from the data. This analysis provides a quantitative and explainable perspective on classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源