论文标题
来自Timelike Liouville理论的三圈分区函数在三环秩序上
The two-sphere partition function from timelike Liouville theory at three-loop order
论文作者
论文摘要
尽管欧几里得二维引力路径总体上是高度波动的,但如果与较大的正中央电荷的物质CFT耦合,它将接收半经典的两球鞍。在Weyl仪表中,该重力理论被称为序列类型的Liouville理论,并被认为是一种非独立的二维CFT。我们通过从路径积分的角度来计算两范围的分区函数来探索序列式的liouville理论的半经典限制,从而扩展了2106.01665的工作。我们还将结果与从dozz公式获得的猜想的全环球分区函数进行了比较。由于两个球的几何形状是欧几里得二维de de Sitter空间的几何形状,因此我们的讨论与吉本斯·霍克(Gibbons-Hawking)的猜想有关,根据该概念,DS熵在紧凑型歧管上的欧几里得重力路径积分中编码。
While the Euclidean two-dimensional gravitational path integral is in general highly fluctuating, it admits a semiclassical two-sphere saddle if coupled to a matter CFT with large and positive central charge. In Weyl gauge this gravity theory is known as timelike Liouville theory, and is conjectured to be a non-unitary two-dimensional CFT. We explore the semiclassical limit of timelike Liouville theory by calculating the two-sphere partition function from the perspective of the path integral to three-loop order, extending the work in 2106.01665. We also compare our result to the conjectured all-loop sphere partition function obtained from the DOZZ formula. Since the two-sphere is the geometry of Euclidean two-dimensional de Sitter space our discussion is tied to the conjecture of Gibbons-Hawking, according to which the dS entropy is encoded in the Euclidean gravitational path integral over compact manifolds.