论文标题
在二维二元bose-Einstein冷凝物中与旋转桨电势的涡流形成和量子湍流
Vortex formation and quantum turbulence with rotating paddle potentials in a two-dimensional binary Bose-Einstein condensate
论文作者
论文摘要
我们对二维二元玻色 - 因凝结物中涡流的创造和动力学进行了理论研究,该物种之间的质量不平衡。为了启动动力学,我们在一个物种中使用一个或两个旋转的桨电势,而另一种物种仅通过种间相互作用影响。在这两个物种中,涡旋的数量和主要符号都是由桨电势的旋转频率确定的。使用单个桨电势时,正旋转频率的正旋转和负涡旋簇形成与陷阱的簇相当。相反,随着桨的旋转频率的增加,相同符号的涡旋倾向于占主导地位,并且角动量在桨频频率下达到最大值,在桨频频率上,桨叶速度变得等于冷凝水的声速。当旋转频率足够高时,涡流 - 抗反式的快速歼灭会显着减少系统中涡流和抗抗反应的数量。对于沿同一方向旋转的两个桨电势,涡流动力学现象与单个桨叶相似。但是,当桨电势沿相反方向旋转时,正面和负符号涡流都在所有旋转频率下发生。在低旋转频率下,类似符号涡流的簇产生$ k^{ - 5/3} $和$ k^{ - 3} $在低和高波域的不可压缩动能谱中的功率定律,分别是量子动力流动的标志。
We conduct a theoretical study of the creation and dynamics of vortices in a two-dimensional binary Bose-Einstein condensate with a mass imbalance between the species. To initiate the dynamics, we use one or two rotating paddle potentials in one species, while the other species is influenced only via the interspecies interaction. In both species, the number and the dominant sign of the vortices are determined by the rotation frequency of the paddle potential. Clusters of positive and negative vortices form at a low rotation frequency comparable to that of the trap when using the single paddle potential. In contrast, vortices of the same sign tend to dominate as the rotation frequency of the paddle increases, and the angular momentum reaches a maximum value at a paddle frequency, where the paddle velocity becomes equal to the sound velocity of the condensate. When the rotation frequency is sufficiently high, the rapid annihilation of vortex-antivortex pairs significantly reduces the number of vortices and antivortices in the system. For two paddle potentials rotating in the same direction, the vortex dynamics phenomenon is similar to that of a single paddle. However, when the paddle potentials are rotated in the opposite direction, both positive and negative signed vortices occur at all rotational frequencies. At the low rotation frequencies, the cluster of like-signed vortices produces the $k^{-5/3}$ and $k^{-3}$ power laws in the incompressible kinetic energy spectrum at low and high wavenumbers, respectively, a hallmark of the quantum turbulent flows.